Algebraic analysis of Lukasiewicz logic (ESSLLI, Summer School, Utrecht)
نویسنده
چکیده
Definition 1. An algebra (A,⊕,∗ , 0) with a binary operation ⊕ : A×A → A and with a unary operation ∗ : A → A and a constant 0, is said to be an MV -algebra iff satisfies the following conditions for all a, b, c ∈ A: (1) (A,⊕, 0) is a commutative monoid; (2) x⊕ 0∗ = 0∗ for every x ∈ A; (3) (x∗)∗ = x for every x ∈ A; (4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x for every x, y ∈ A. ¿From (4), setting y = 0∗, we immediately get x ⊕ x∗ = 0∗. On each MV algebra A, we can give the following definitions:
منابع مشابه
Logics for Topological Reasoning ESSLLI Summer School August 2000 University of Birmingham, UK
4 The Modal Logic S4 7 4.1 Kripke Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.2 Modal Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.3 Algebraic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.4 Power-Set Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.5 Mappi...
متن کاملReasoning with Probabilities
This is an outline for the course “Reasoning with Probabilities” taught at the European Summer School for Logic, Language and Information in Bordeaux, France on July 26 31, 2009 (ESSLLI 2009). This document contains an extended outline of the course including pointers to relevant literature. The course website: ai.stanford.edu/∼epacuit/classes/esslli/epprob.html will contain the slides and a sc...
متن کاملCategorial Grammars ESSLLI Notes ( 2005 , Edinburgh , Scotland ) Philippe de Groote Sylvain
Categorial Grammars ESSLLI Notes (2005, Edinburgh, Scotland) Philippe de Groote Sylvain Pogodalla
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999